

FIGURE 18.6. The probability that a single copy of an allele with selective advantage s will be fixed in a population of effective size N_e is $2s(N_e/N)/(1-\exp(-4N_e s))$, where N is the actual number of individuals. The graph shows this probability plotted against $N_e s$, for $N_e = N$. If the allele is strongly favored $(N_e s >> 1)$, then $P \sim 2s(N_e/N)$. If $N_e s$ is small, then drift is much stronger than selection $(1/2N_e >> s)$, and so the allele is effectively neutral (shaded strip). Because each of the 2N genes in the population has the same chance of ultimately fixing, $P \sim 1/2N$ (see p. 425). Finally, if the allele is deleterious $(N_e s << -1)$, then the probability of fixation becomes very small: $P \sim 2lsl(N_e/N)\exp(-4N_e|sl)$, where lsl is the positive magnitude of selection (i.e., -s if s < 0).